Decision-Making in Complicated Geometrical Problems
نویسندگان
چکیده
Due to increasing the number of decision-making criteria in today's ever complicated geometrical optimization problems, the traditional multiobjective optimization approaches, whether a priori, a posteriori or interactive's, found to be insufficient and ineffective. In this paper the drawbacks of the current algorithms are reviewed and the urgent need for inserting a learning component in the optimization loop is discussed. In the following the methodology of reactive optimization for evolutionary interactive multiobjective optimization for solving complicated geometrical decision-making problems is adopted. The proposed brain-computer optimization follows to the paradigm of learning while optimizing, through the use of online machine learning techniques as an integral part of a self-tuning optimization scheme. At the end the effectiveness of the approach to geometrical problems is emphasized by providing the study case of optimal design problem of curves and surfaces.
منابع مشابه
Data mining for decision making in engineering optimal design
Often in modeling the engineering optimization design problems, the value of objective function(s) is not clearly defined in terms of design variables. Instead it is obtained by some numerical analysis such as FE structural analysis, fluid mechanic analysis, and thermodynamic analysis, etc. Yet, the numerical analyses are considerably time consuming to obtain the final value of objective functi...
متن کاملA Multi-Criteria Analysis Model under an Interval Type-2 Fuzzy Environment with an Application to Production Project Decision Problems
Using Multi-Criteria Decision-Making (MCDM) to solve complicated decisions often includes uncertainty, which could be tackled by utilizing the fuzzy sets theory. Type-2 fuzzy sets consider more uncertainty than type-1 fuzzy sets. These fuzzy sets provide more degrees of freedom to illustrate the uncertainty and fuzziness in real-world production projects. In this paper, a new multi-criteria ana...
متن کاملGroup Generalized Interval-valued Intuitionistic Fuzzy Soft Sets and Their Applications in\ Decision Making
Interval-valued intuitionistic fuzzy sets (IVIFSs) are widely used to handle uncertainty and imprecision in decision making. However, in more complicated environment, it is difficult to express the uncertain information by an IVIFS with considering the decision-making preference. Hence, this paper proposes a group generalized interval-valued intuitionistic fuzzy soft set (G-GIVIFSS) which conta...
متن کاملStochastic Decision Making in Manufacturing Environments
Decision making plays an important role in economics, psychology, philosophy, mathematics, statistics and many other fields. In each field, decision making consists of identifying the values, uncertainties and other issues that define the decision. In any field, the nature of the decisions is affected by environmental characteristics. In this paper, we are considered the production planning pro...
متن کاملSome New Concepts About IT2FNs With Their Usage in Group Decision-Making Problems
Interavl type-2 fuzzy numbers (IT2FNs) are used in many real problems such as multiple attribute decision making (MADM) problems, to model the opinions/judgments of experts. This paper, using centroid points and uncertainty degrees of IT2FNs, presents a new method to rank them. Also, we present new methods based on Choquet integral and various types of Power average to aggregate a set of IT2FNs...
متن کامل